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An extension of the lattice Boltzmann BGK method to compressible flows is
presented that combines three novel additions: (1) particles move density and
energy weights in multiple velocity bins (11 for 1-D flow) to nearby cell centers.
(2) the equilibrium distribution remains an unexpanded Maxwellian; and (3)
transport and relaxation to equilibrium are performed implicitly at each node.
These advances allow for the parallel modeling of high Mach number shocks
and high Reynolds number flows, while avoiding advective numerical diffusion,
the need for Riemann solvers, and non-linear limiters. A 1D shock tube appli-
cation is shown. Generalization to higher dimensions and multi-materials are
discussed.
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1. INTRODUCTION

The Lattice Boltzmann method (LBM) provides efficient parallel simula-
tion of low speed Eulerian hydrodynamic flows. It employs an underlying
kinetic model based on a distribution of density weights at a set of discrete
velocities to obtain solutions to the Euler and Navier–Stokes equations.
Lattice gas automata (1) (LGA) were first used for this kinetics, then the
Boltzmann equation, (2) and now, generally, a Krook (3) (BGK) collision
operator is used to establish equilibrium. (4) LBM has been applied (5) to
complex geometries, fluid turbulence, multi-component flows and heat
transfer, and multi-dimensions. (6) Here, we introduce a new particle-based
compressible lattice-BGK model (CLBM). (7)

Traditional finite-volume compressible Eulerian schemes have seen
significant refinement in recent years. (8) These schemes frequently employ



Godunov Riemann solvers, (9) plus advection with total variation diminishing
(TVD) and essentially non-oscillatory (ENO) methods (10) to minimize
numerical diffusion. They can bear a burden, however, of complex Riemann
logic, parallelization and multi-dimensional challenges, residual numerical
oscillations, and an uncertain diffusive content. CLBM can offer a robust,
embarrassingly parallel alternative and new insight.

The standard LBM (6) model transports a distribution of density weights
during a computational time step Dt, typically with one speed for each
direction (9 speeds including zero for a 2D simulation). It combines the
weights at each speed to form mean fluid densities and velocities. It then
constructs a local Maxwellian equilibrium distribution from these mean
properties. Finally, LBM relaxes the weights at a rate 1/y towards this
equilibrium. The transport and relaxation operations are split (sequential).
The transport operation is linear, and moves the weights to neighboring
cell centers over a distance of, say, Dx. The Maxwellian distribution is
expanded for small speeds relative to a mesh speed, Dx/Dt. Traditional
LBM relaxation is performed explicitly, with y chosen such that y > Dt/2
for stability.

LBM is largely limited to low speed flows (incompressible), although
several related compressible techniques have been propose. (11–20) Alexander
et al. (11) chose a modified equilibrium distribution, allowing the lattice gas
equations replicate the Burgers equation with a controlled sound speed.
Nadiga (12) designed a discrete scheme with velocities adapted to the local
flow conditions and using limited interpolated fluxes. Huang et al. (13)

similarly used flow-adapted discrete velocities, a non-unique equilibrium
distribution constrained by a set of moments linearly, and interpolated the
deposition of weights to the nodes. Prendergast and Xu, (14) Kim et al., (15)

and Kotelnikov and Montgomery (16) used the Krook model to evaluate cell
boundary fluxes and then employed TVD flux limitation to establish the
mean flow into neighboring cells. Renda et al. (17) modified the equilibrium
distribution at high speeds. Vahala et al. (18) extended the Maxwellian
expansion, and went to octagonal meshes to achieve Mach numbers of 0.5.
Sun (19) used a set of particle velocities adapted to the local fluid velocity
and internal energy. De Cicco et al. (20) employed additional ring of veloci-
ties for shocks, and Guangwu et al. (21) supplied both the extra velocities
and an added set of energy weights for compressible modeling.

Where these compressible approaches employ flux-limitation and/or
interpolation, they introduce uncertain levels of diffusion and clipping that
is reminiscent of the traditional finite volume Eulerian schemes, but with
added kinetic complexity. Where they add additional velocities and energy
weights, but an expanded equilibrium distribution, these methods require
the determination of additional moments beyond momentum and energy
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for closure, and recourse to ad hoc relations between these moments. We
seek to avoid these limitations.

The present CLBM approach resembles comprehensive Rarefied Gas
Dynamic schemes, (22) and a much earlier particle-in-cell (PIC) method. (23–25)

However, here the number of velocity beams is reduced to a minimum for
efficiency in the Eulerian limit, and the particle end points are restricted to
cell centers to eliminate numerical diffusion from interpolation and the
need for flux-limitation.

In the next section the compressible model is described. Section 3
presents results from a shock tube simulation, along with a phase space
rendering of the underlying kinetics. Finally, Section 4 discusses possible
extensions, and Section 5 gives concluding remarks.

2. THE COMPRESSIBLE MODEL

The new CLBM is presently based on the 1D Krook equation (4)

“f
“t
+u
“f
“x
=−v(f−feq) (1)

in which the equilibrium distribution feq is given by

feq(x, u, t)=
n(x, t)
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with n, u, and a20=oT/m the local density, mean velocity and mean
thermal speed, respectively, and where o is Boltzmann’s constant, m is the
molecular mass, and T is the fluid temperature. In order to transport the
transverse temperature data conveniently, we produce two reduced distri-
butions (23, 24, 26) by integrating over the transverse velocities v and w. We
thereby obtain a set of density and energy weights g=> f dv dw, and h=
m > (v2+w2) f dv dw, governed by
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at the discrete velocities u, indexed by j. The corresponding reduced equi-
libria at each velocity are

geqj =
n(x, t)

`2p a0(x, t)
exp 1−(uj−U(x, t))

2

2a20(x, t)
2 (4a)

and

heqj =2ma
2
0(x, t) g

eq
j (4b)

The coupling between the weights occurs through the three moments

n(x, t)=C
j
gj Du

nU(x, t)=C
j
ugj Du

3nma20(x, t)=3nkT(x, t)=C
j
mu2j gj Du+C

j
mhj Du

(5)

which are computed with constant width velocity bins Du. Our scheme is
particle based, so that advection of the weights is accomplished by the
motion of particles, here labeled l. The particles are given initial weights
according to

g l=
Nn(xl, t)

`2p a0(xl, t)
exp 1−(ul−U(xl, t))

2

2a20(xl, t)
2 (6a)

and

h l=2ma
2
0(xl, t) g l (6b)

with a normalization N such that the initial particle contributions to each
cell add to produce n(x, t). Transport is accomplished by moving weighted
particle l from old position x (m)l to new position x (m+1)l with speed ul [equal
to one of the beam velocities uj].

x (m+1)l =x(m)l +ul Dt (7)

Weights on the particles are accumulated to evaluate moments in the cells
following traditional PIC procedures. (27)
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2.1. The Early PIC Approach

In our very earliest one-dimensional studies (23–25) we used 89 velocity
beams over the range ±5a0. Two or more particles were used per cell in
each velocity beam. During a computational cycle the particles were moved
relative to a background mesh of fixed cells of width Dx. The time step Dt
was chosen so that particles at the mean thermal speed a0 would cross one
cell per cycle, and so that n Dt < 1. Thus, many of the particles crossed less
than one cell. Linear area-weighting (27) was employed to attribute the par-
ticle density, velocity, and energy to the cell centers (here designated by xl)
and used to determine a cell-centered Maxwellian. This data was inter-
polated (reverse area-weighted) to produce a local Maxwellian at each par-
ticle’s position. The particle density and energy weights were changed
through explicit relaxation toward this local Maxwellian. Thus, by virtue of
the right hand side of Eq. (3a), the transported density weights, g (g)l [with
(g) indicating post-transport, i.e., g (m)l (xl−ul Dt)] would relax through
collisions to

g (m+1)l =g (g)l − n Dt(g
(+)
l −g

eq(g)
l )=(1− n Dt) g (g)l +n Dt g

eq(g)
l (8)

in which geq(g)l , the local Maxwellian, was area weighted to the particle, and
based on moments of the transported weights evaluated at the centers. The
superscript (+) indicated a possible time level choice, e.g., fully explicit or
fully implicit. For explicit collisions g (+)l was the same as g (g)l following the
transport. The transported energy weights h (g)l were similarly relaxed. The
new particle weights were then area weighted to the nodes to yield the new
moments. This early weighted PIC scheme yielded weak shock solutions in
agreement with alternate numerical results, (28) but generally broad shock
structures. The wide range of particle velocities promised an accurate
modeling for Rarefied Gas Dynamics (22) problems, where the particle
weight changes from collisions would be minimal. This primary sche-
me (23–25) was, in fact, an early version of discrete-velocity models
(DVM) (29, 30) of the Boltzmann equation, now widely applied in kinetic cal-
culations.

Note that the reduced distribution hl was used here for one-dimensional
flow to transport the transverse thermal energy (perpendicular to the fluid
drift direction) with improved resolution. Without this reduction many
additional speeds would be needed to represent the transverse kinetics. This
simplification was first used by Chu (26) for BGK shock studies. An extension
of the method to two-dimensional flows (in directions x and y, with corre-
sponding drifts u and v) uses only h=m > w2f dv dw, and employs many
additional speeds, as shown by Yang and Huang. (22) A 3D extension would
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solve Eq. (1) for the weights f in each cell, using no reduction. In all these
cases, total energy in the flow direction is transported by the velocity distri-
bution of the weights. This is in contrast to the internal energy distribution
function g=((u−U)2+v2+w2) f, introduced by He et al. (31) for the trans-
port of thermal energy in the incompressible limit.

2.2. The New CLBM Model

Our new scheme shares many features of our earlier PIC–DVM
approach, but now focuses on the Eulerian limit. We now seek to use only
the smallest number of velocities beams needed to preserve the fluid
moments of density, momentum and energy. Learning from traditional
LBM, (5) we time-tie our discrete velocity set to our space discretization,
producing a discretized version of DVM. (30) However, we differ from earlier
approaches in three important respects:

(a) The Velocity Lattice. We now employ much smaller number of
beams (11 in one dimension over a range ±5a0 for the shocked flow of
Section 3) than for kinetic DVM. Also we employ many more beams than
would be used in 1D projection for traditional LBM. More importantly,
the particle velocities are now in a ‘‘lattice,’’ such that all of them move
strictly between cell centers on the background mesh, many skipping over
neighboring cells. The zero-speed particle is, of course, fixed. During a time
step the first moving particles (at ±a0) shift to the nearest neighbors, the
next in speed skips one cell, etc., until finally the fastest particles project
left or right to the 5th cell center. This arrangement is sketched in Fig. 1.
It has the negative consequence that the resultant stencil is large; we
must expect that \ 11 cells will be needed to resolve a shock. It has the
important advantage that interpolative diffusion is eliminated. In Fig. 1 we
introduce the concept of a macro-cell as including all the cells reached at
the different speeds from a cell center during a cycle.

Fig. 1. Velocities are selected to run particles between cell centers in a time step. Eleven cells
constitute a Macro-cell. Non cell-centered Particle #1’s weights could diffuse to #2 and #3.
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Interpolative diffusion could evolve in our earlier model (23) as follows:
Assume that a highly weighted particle (#1) has moved right to a cell
boundary, and that the initial fluid density is low beyond this boundary.
Let the time step Dt be such that the particle moves only a fraction of the
cell width Dx. The particle projects its density weight evenly between the
two neighboring cells, left and right. This contributes to the Maxwellian
amplitude at the right cell center, as shown in Fig. 1. Now consider a
similar particle (#2) further right near the next cell boundary. The inter-
polated local Maxwellian at that particle’s location now includes a contri-
bution from particle #1. In the collisional relaxation process particle #2
will have its weights adjusted toward this Maxwellian. In the next cycle
particle #2 will project a fraction this new weight into the next cell center
to the right, increasing the density of that cell’s Maxwellian. This, in turn,
will interpolate a fraction its weight to the local Maxwellian for #3, where
collisions will subsequently adjust its weights, and so on. Thus, density
could diffuse ahead, one cell per time step, an error now avoided with par-
ticles stopping only at centers.

(b) An UnexpandedMaxwellian. We continue to leave the Maxwellian
unexpanded, thereby permitting modeling at high Mach numbers. (As a
byproduct, a more accurate rendering of incompressible LBM should pos-
sible for low speed flow in a high background temperature.) Note that for
higher speeds flows, and stronger shocks than the one analyzed in Section 3,
a greater number and range of velocity beams may be needed to represent
the underlying kinetics. In general, the moments over our small number of
beams will not be precisely equal (29, 30) to the moments over a full Maxwellian,
although for the sample calculations which follow, effects from this are
minimal. For the moment sums in Eq. (5) we have used Du=a0. For more
precision one might choose more beams and a smaller Du, or simply
renormalize the beams with shifted weights for greater accuracy in the
moments.

(c) Implicit collisions. We relax to the Maxwellian implicitly, per-
mitting large collision rates n Dt± 1 with stability, and possibly a small
mean free path for thinner shocks and high Reynolds number studies. In its
simplest formulation the relaxation operator becomes implicit by simply
setting g (+)l to g (m+1)l in Eq. (8). One extracts

g (m+1)l =
g (g)l +(n Dt) g

eq(g)
l

(1+n Dt)
|||0
n Dt± 1

geq(g)l (9)

This drives the weights to the equilibrium distribution for large collision
rates. A similar expression produces h (m+1)l . Huang et al. (13) have streamed
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a related equilibrium distribution. A limitation here is that the cycle goes
through: (i) streaming, (ii) computation of the moments for geq(g)l , and then
(iii) relaxation yielding g (m+1)l . If the streaming is physically excessive before
relaxation, there exists no corrective mechanism. That is, if the local colli-
sion rate is high, such that the particles carrying the weights would be
converted to a Maxwellian after crossing only a small fraction of a cell
width, this is ignored and the particles travel all the way to the next cell
center prior to relaxation. A more accurate model would produce a
Maxwellian after that first fractional cell width, and then correct the dis-
tribution again and again, as the distribution of particles passed each mean
free path. Such excess streaming has been ameliorated to some degree by
implicitly coupling the streaming and collisional relaxation updates, (32) i.e.,

g (m+1)l (x)=g (m)l (x−ul Dt)− n Dt{(hg
(m+1)
l (x)+(1−h) g (m)l (x−ul Dt))

−(hgeq(g)l (x)+(1−h) geq(m)l (x−ul Dt))} (10)

with a similar equation for h (m+1)l . The parameter h can be set to 0.5 for
time centering, and to 1.0 for maximal stability. Equation (10) is a solution
to Eq. (3a) along the characteristics of Eq. (7). The implicit relaxation of
the weights occurs as a particle streams from the old position xl−ul Dt to
the new xl=xi. The weights at the end of the particle trajectory are identical
to the weights at corresponding nodes, since all the particles move between
nodes. The n Dt terms drive the time-averaged distribution toward the time-
averaged Maxwellian. The solution is found iteratively and locally at each
node: (1) A guess for geq(g)l =geq(g)i is made; e.g., we start with the equilib-
rium Maxwellian following pure streaming. (2) Equation (10) is then solved
for the resultant g (m+1)i =g(m+1)l at each node. (3) Similarly, h (m+1)i is
obtained. (4) Finally, new moments, n, nU, and na20 are determined from
(5), and used to get an improved values for geq(g)i and heq(g)i =heq(g)l . Typi-
cally, after 3 iterations this process appears to give good convergence. As
with traditional particle-in-cell codes, for h=0.5 the average force (particle
collisions) operates at the average particle positions on the average weights,
rendering, we believe, second order accuracy in space and time, although
structures (e.g., the contact surface) remain broad due to the large stencil
for the macro-cells. This view warrants further study, however. Others have
proposed more complex implicit (33) LBM schemes, requiring the solution of
elliptic equations avoided here.

Implicit relaxation adds a new degree of control, missing in conven-
tional LBM. Normally, the non-centered transport is mildly dissipative,
and the explicit relaxation operation, which is related to an unexpanded
Eq. (8) with (+)=(g), could lead to instability or net exponential growth

392 Mason



for n Dt > 2 (i.e., y < Dt/2). Here, the implicit collisions are conservative
when centered and otherwise dissipative, assuring stability with n Dt± 1.

3. SHOCK TUBE APPLICATION

The success of this approach in 1D is demonstrated with the pictured
results of Figs. 2 and 3 for an 8:1 initial density ratio shock tube, and a
10:1 initial pressure jump [initial thermal speed a0(x=0)=1], particle
speeds ui=+5, +4, +3,... to −5, and an initially motionless perfect gas
(c=5/3), with Dt=0.2, Dx=0.2, and with n Dt=100, implicit streaming
and relaxation Eq. (10) with h=0.55 time-centering. This is the classical
Sod test problem (34) with both a density jump and a temperature step (of
1.25:1). Here Dx is arbitrary, and Dt=Dx/a0. The moments at t=20
compare well with the exact solution. The resultant shock Mach number
is 2.13.

Our full set of results is for 500 cells. Mirror boundary conditions were
applied, so that at x=0, for example, a particle on passing through the
boundary has its speed and position changed as: ul Q −ul, and xl Q −xl.
Here, the shock transition takes about 11 computational cells, or one
macro-cell. No density overshoots appear in the vicinity of the shock. The
calculated contact ‘‘surface’’ is 3 macro-cells wide. Using the simpler
Eq. (9) for relaxation the shock is twice as wide. With either relaxation
model the results are unchanged for n Dt \ 10. With Eq. (10) the shock is
1.5 times thicker, if h=1.0; instability is evident for h < 0.5. If the time step
is reduced by ½ to Dt=0.1 with the older area-weighting of density and

Fig. 2. The evolving density profile up to t=20.
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Fig. 3. Normalized density, temperature T=a20/a
2
0(t=0, x=0), pressure and velocity as

compared to the exact solution to the classical Sod problem, Pl/Pr=10, rl/rr=8,
Tl/Tr=1.25.

transverse energy to the mesh, the shock broadens noticeably, as originally
in refs. 23 and 24. When, as well, the velocity range was reduce to ±3.5,
the post-shock density profile was erroneously upward slanting toward the
shock, since resolution was missing at speeds needed to properly register
the shocked temperature rise. This points to a need for higher speed beams
in our CLBM, when higher Mach numbers are anticipated.

Fig. 4. Convergence test showing the CLBM solution converging toward the exact solution
as the number of cells in the test area is changed from 200 to 500, and then to1000.
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Fig. 5. The phase space constructed from the density weights gi shows the sub-structure of
the evolving shock and contact surfaces.

Figure 3 compares our CLBM results with the exact solution, as
determined from software available with ref. 9. The largest discrepancies
are at the contact surface. Compared to the same classical Sod shock
studied by Prendergast and Xu, (14) which used only 200 cells, our contact
surface appears wider. This is likely due to the broad spatial stencil of our
CLBM. Figure 4 shows that our results converge toward the exact solution
as the number of cells in the test area is increase from 200 to 500, plus
results for a further cell increase to 1000. In Fig. 5 the phase space accu-
mulation (for 500 cells) of density weights shows the underlying structure
of the evolving shock, contact surface, and expansion at times approaching
t=20.

4. OBSERVATIONS

Advantages of our new CLBM are simplicity, ease of implementa-
tion—even with implicit relaxation, and accuracy with minimal overshoots
and diffusion as demonstrated in our shock tube tests. The new scheme
relates to other and older DVM kinetic methods, but uses a much smaller
number of speeds, and concentrates on the Eulerian limit. It extends LBM
by avoiding the low mean velocity expansion of feq that leads to a break-
down of the standard method beyond moderate Mach numbers, e.g.,
M> 0.35, as reported by Vahala et al. (18) It avoids the velocity overshoots
of thermal models with extended velocities, as seen by Guangwu et al., (21)

and the ambiguities in the choice of additional moment equations
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encountered in closing such models. It avoids unphysical dissipation from
limitation (near shocks) required for alternate gas kinetic BGK models, (14–16)

by using a strict space-velocity lattice as in conventional LBM, but with an
extended stencil of cells. Unlike other newer methods, e.g., ref. 19, it should
provide stable access to low Reynolds numbers (for n Dt± 1, i.e., y/Dt° 1)
via implicit collisional relaxation. Our CLBM approach yields useful insight
into the underpinnings of the Lattice-Boltzmann Method, and offers the
serious possibilities for productive future extensions.

It is instructive to compare the well-regarded Gas-Kinetic approach of
Prendergast and Xu to our CLBM technique. These authors show in
ref. 14, Eq. (2.15) that the formal solution to our BGK equation (1) over a
time step Dt=t−t0 for a fixed collision rate n=1/y is given by the sum of
the streamed initial distribution times an exponential decay factor e −t/y,
plus the time integral from tŒ=t0=0 to tŒ=Dt of the local Maxwellian
equilibrium distribution feq(tŒ) times the exponential kernal e −(t−tŒ)/y. They
evaluate this Maxwellian approximately as a linear extrapolation in x and t
of its values from the cell boundaries. Conservation of moments is
employed to determine the extrapolation coefficients in x and t. This leads
to moment fluxes, which must be limited to determine smooth and stable
hydrodynamics.

Alternatively, our CLBM approach time-centers a spatially cell-
centered feq for our choice of h, moves it outside the integral sign, and time
integrates just the remaining exponential kernal. With the subsequent
approximation that e −t/y % 1/(1+Dt/y)=1/(1+n Dt), we obtain Eq. (8).
We then implicitly determine feq at the cell centers by local iteration. This
appears to be a simpler procedure, yielding, for example, good agreement
with the exact solution to our shock problem.

Two obvious options exist for higher dimensions. The most accurate
approach would be to square the number of velocities for 2D, and move
the particles to particle centers in the square surrounding an emitting cell,
as done in conventional LBM, but with the extra velocities. This minimizes
mesh related errors, say along the 45° directions. In 2D this would require
112=121 speeds. While such a large speed count is unusual, given the
embarrassingly parallel nature of CLBM, this direct approach could be
used with newly developing DOE-ASCI computing resources (at least for
2D), allowing for efficient domain decomposition (35) and parallel scaling.
The details of such an implementation must await further study. A simpler
approach, as suggested by both Prendergast and Xu (14) and by ref. 22,
could be to operator-split the hydrodynamics into the maximum number of
directions, i.e., three successive one-dimensional problems for 3D, and then
updates weights sequentially in each of these directions, alternating the
directions in successive time steps. No more than the one-dimensional total

396 Mason



(e.g., 11) of velocity beams—repeatedly re-weighted and generating new
intermediate moments—might suffice for this approach. While this would
sacrifice some multi-dimensional advantages of LBM, it would still avoid
the need for Riemann solutions, and the introduction of numerical diffu-
sion from flux limitation.

Our focus here has been Eulerian flow. Generally, the effective mean
free path l equals a0/n. For n Dt \ 1 our model approximates the viscous
Navier–Stokes equations with the usual Krook equation limitations, (4, 16, 22)

e.g., that the Prandtl number is unity, with additional deviations that arise
from the limited number of velocities employed. This still needs quantita-
tively evaluation. The Prandtl number can be adjusted with modifications
in the equilibrium distribution, (36) feq. Similarly, generalizations (37) of the
classical LBM can allow for realistic Prandtl numbers in incompressible
flows. A rough mock-up of free-molecular flow would be obtained for
n Dt° 1, with accuracy that can be augmented by the increasing number
of streaming velocities employed in the modeling.

The new method requires a large spatial stencil required for the par-
ticles to move strictly between cell centers. An alternate scheme, transport-
ing the fastest particles to just the next cell center, would give the ‘‘tightest’’
description. The slower particles would then only partially cross a cell,
making contributions to only the nearest cell neighbors. However, without
recourse to TVD-type corrections, which drove us from traditional
Eulerian modeling in the first place, such tight stencils appear to manifest
excessive interpolative diffusion, as discussed with Fig. 1. An alternate view
is that the 11 cells comprising a macro-cell are providing a natural diffusion-
minimized sub-structure for the coupled transport and relaxation in LBM.

For studies of the turbulent mix of multiple materials a logical direc-
tion for extension of the CLBM is to introduce Krook equations for each
component, and couple them through extended relaxation operators, as
explored in refs. 38 and 16. The transverse energy component can be
generalized to allow for varied EOS choices. (39, 40) Finally, adaptive mesh
refinement can be accomplished, as suggested by refs. 41 and 42, particu-
larly near shocks and contact surfaces to reduce overall computational
demands.

5. CONCLUSION

We have shown that the Lattice-Boltzmann Method extends to
compressible problems via a simple scheme, using a relatively small number
of velocities on a large stencil. Particles jump over the neighboring cells
on a velocity-space lattice that avoids interpolative diffusion. Retention of
an unexpanded Maxwellian simplifies the calculations immensely. Implicit
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collisional relaxation affords stability, and access to high collision rates,
while preserving an option for straightforward parallelism. Our shock tube
application demonstrates no overshoots, and a close approximation the
exact solution. The method is simpler than gas-kinetic schemes, works at
higher Mach numbers than thermal LBM models, and avoids the ambigui-
ties introduced with an expanded Maxwellian equilibrium requiring many
moments. Still, other methods may be preferred. Our aim has been princi-
pally to provide new insight, a discussion of specific advantages and limi-
tations of the new CLBM method, and suggestions for possible extensions.
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